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ON THE IONISATION IN THE NEBULAR ENVELOPE
SURROUNDING A STAR.

V. A. Ambarzumian.

(Communicated by E. A. Milne)

At present there is scarcely any doubt that the emission lines in the
spectra of Be stars, as well as the Wolf-Rayet emission bands, have their
origin in extensive and tenuous atmospheres which form some sort of
nebular envelope surrounding these stars. Recently some observational data
about the emission lines and bands and their intensities have been collected
by several observers. The correct theoretical interpretation of these data will
be possible only in terms of the ionisation theory for such extended atmo-
spheres. No such theory exists at present. An attempt to give the first
outline of such a theory is given in the present paper.

It is clear that the ionisation depends chiefly upon the density of the
corresponding ‘‘ultra-violet” radiation at the given point of the atmosphere.
As soon as we have estimated this density our problem is approximately
solved. But the calculation of this density is possible only on the basis
of the theory of radiative equilibrium in these atmospheres. Thus the
problem of ionisation is essentially a problem of the theory of radiative
equilibrium.

A theory of radiative equilibrium of a planetary nebula was proposed
by the present writer in two previous papers.* However, there is an im-
portant difference between the types of the radiative equilibrium in plane-
taries and in the nebular envelope of relatively small radius surrounding
the stars with emission lines.

In a few words this difference may be explained in the following way.
In the previous papers we have shown that the transformation of the quanta
of the ultra-violet continuous spectrum into the quanta of the resonance
line of hydrogen atom (L,) on the one hand, and the large optical thickness
of planetaries in the resonance frequency on the other, lead to a very high
value of the density of L,-radiation in the inner parts of a planetary nebula.
Nevertheless, though exceeding 10° times the density of the direct L,-
radiation from the star falling on the inner boundary of nebule, this density
is still many thousand times smaller than the density of L,-radiation at
the surface of the central star, since the dilution factor W is of the order
of 10713, Therefore the relative number of atoms in the second level is
also small compared with that on the surface of the star, and we may still
neglect the transitions from the second level to the higher levels.

We know indeed that the number of such transitions per second is pro-
portional to 7.p,, Where 7, is the number of atoms per c.c. in the second

* M.N., 93, 50, 1932 ; Bull. de I’observatoire central & Poulkovo, 13, 3, 1933.
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level and p,; is the density of the corresponding radiation. For 7, we have
approximately 7, =~ nl—"lz, where py, is the density of radiation corresponding
g

12
87hyy,3 ..
12 Therefore the number of transitions

to transition 1 - 2 and oy, =

2 — 3 1s proportional to 7,p,,ps5, While the number of transitions 1 — 3 is
- proportional to nypy;. The coefficient of proportionality is of the same
order of magnitude in both cases.
Now on the surface of the star we have approximately

(P18)surt = (P12)surt(P2s)surs- (A)

In the nebUIa we have (:513)neb = W(1513)surf’ (1623)neb = W(P23)surf and
(P12)neb = €(P12)eurry Where e is a small quantity of the order of 107* as was
mentioned above.

Therefore taking into account (A) we find

(P12)nen(P23)ned = €(P13)nens

or

3
23

nl(ﬁl2)neb(P23)neb = nl::l_gg,e()oli;)neb,

and we see that the number of the transitions 2 — 3 is a negligible fraction
of the number of the transitions 1 - 3. At the same time a considerable
portion of atoms arriving at the third state passes spontaneously to the second
state, and we may say, therefore, that the number of transitions 2 — 3 is negli-
gible compared with the number of transitions 3 — 2. In other words, we
may neglect the number of the cyclic transitions of the type 1 -2 -3 -1
compared with the number of the cyclic transitions of the type
I—->3—>2—>1.

In accordance with this, the method developed in our previous papers
where the transitions 1 — 2 — 3 — 1 were neglected, is applicable to the
planetaries.

It cannot be applied, however, to the cases where the dilution of radia-
tion is not so high as in planetaries. Thus it is in no case applicable to the
gaseous envelopes of the Wolf-Rayet stars and Be stars. In the Wolf-
Rayet stars the envelopes are immediately attached to the surfaces of the
stars and the maximum of density is at the surface itself. In this case,
for example, W is of the order of unity, and our method is certainly not
applicable. At the same time we cannot restrict ourselves in this case to
the consideration of monochromatic radiative equilibrium, as we do in
the case of the reversing layers of stars for the resonance lines, making use
of the fact that the cyclic transitions are relatively rare when compared
with the transitions of the type 1 — 2 — 1. In fact, though this is still
true in the case of Wolf-Rayet stars, we cannot neglect the cyclic transitions,
since these transitions only are responsible for the appearance of the emission
lines (or bands).

At first sight it seems questionable whether it is necessary to take into
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account the partial compensation of the “direct” cyclic processes, corre-
sponding to the fluorescence phenomenon (1 -~ 3 - 2 - 1), by reverse pro-
cesses (I > 2 - 3 — 1), when we are convinced that our theory would have
only a qualitative character owing to many other approximations of a
physical and geometrical nature. It seems to us that for the question of
the final intensities of the emission lines, it is of little difference whether
we take into account the reverse processes or not. But if our purpose is
the calculation of the ionisation in the envelopes, the difference between
these two cases is very large. The exact formule we shall give below, but
even now we may see that the degree of ionisation, which is proportional
to the density of corresponding radiation, in the case of the complete com-
pensation of the processes of both kinds can be represented according to
Schuster’s theory in the form :

_l_
" p—CES, (B)
n L+1

where ¢ is the optical depth of the given point of the envelope and ¢, the
whole optical thickness, while in the case when each absorbed ‘‘ ultra-violet”
quantum is split up into quanta of small frequencies and no reverse process
occurs, we shall have

nt
;ne =C’e—(7‘1—7)- (C)

In the case when the optical thickness of the envelope is large compared
with unity, the formula (B) and (C) give us the ionisation of quite a different
order of magnitude. It is possible that the exact formula will give something
between (B) and (C). But the difference between (B) and (C) is too large
to give us any possibility even of approximate estimation of the quantity
under consideration.

In the present paper we are performing some calculations which, perhaps,
may serve this purpose.

The Conditions of the Steady State.—We shall consider an atom in which
the electron has only three energy levels ¢; < €, < €5. Each of these levels
has the corresponding weight gy, g,, g5. If the density of matter is so low
that we may neglect the super-elastic collisions, and each electronic transi-
tion is accompanied by the corresponding radiation of a light quantum,
the conditions of the steady state may be written in the form :

1{B12p12+ Bispia} = ”2§T1B12(U12 +p12) + ”3?313(013 +p13)
2 3

, (1)
1y B3y -+ MoBaspas =151 22 B £2p
1D713p13 T NaDggpog =M 13(013+P13)+g 23(023 + P2s)
3 3

where 7, is the number of atoms in kth state in c.c.,, p; is the density
| € — & |
h

efficients of transition from lower state 7 to the higher state k.

of radiation with frequency v; = » By, is Einstein’s probability co-
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The quantities oy, are connected with v;;, and the universal-constants by
means of relation

3
Oik = 8772/”6 g (2)

The equations (1) replace the equation of the radiative equilibrium in
the case when the conditions of thermodynamical equilibrium are not
fulfilled.

If we suppose now that the third energy level is not a discrete one, but
corresponds to the case when the atom is ionised and the electron is in a
free state, we shall introduce instead of the Einstein probability coefficients
B, _,;and B,_, ;from one discrete state to another, some probability coefficients
of the photo-electric transitions defined in an appropriate way. Thus the
whole number of the ionisations of atoms per c.c. during an interval of time
dt is equal to

(11D1_5 3013 + 12Dy 3p03)dE, (3)

where p,, is the specific density of radiation for minimal frequency v;3, which is
necessary for the ionisation of the normal atom, and p,; is the specific density
for minimum frequency v,5, which is necessary for the ionisation of an excited
atom. Strictly speaking, the number of ionisations, from the first level for
example, depends not only on the specific density in the frequency v, but
also on the specific densities for all frequencies which satisfy the inequality
v > 1. However, we may suppose that the relative distribution of energy
beyond the frequency v,; is determined by a single parameter T (‘‘tempera-
ture”’), and assume that the expression (3) is valid under the condition that
by_,5 and b,_,; are dependent on this parameter.

The number of the spontaneous recombinations during the same time d¢
is equal to the expression

n3(a3—>1 + a3—>2)nedta (4)

where 73 is now the number of ionised atoms, and nga,_,,dt (or nya;_, .dt) is
the probability of such recombination of a free electron with an ionised
atom, which gives an atom in the first level (or in the second level). 'The
simple considerations connected with the process of ionisation show that
between our a—s and b—s there are the following relations :—

c o
a . 2% 1->3 5 as 5o =i7—2+§ 2-53> (5)

where g* is the weight of the normal state of the ionised atom and

o (2wm}:<3T)3/2- (©)

The expressions (3) and (4) for the number of transitions and the relations
(5) and (6) make it possible for us to write in our case the conditions of the
steady state in the form :
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13{B12p12+ by3p1s} = ”2?312(012 +p12) +g%;b13(013 + p1a)nsn,
2

(7)
ngn,
M1b13p15 + Mobaspas = 3G {i‘%bla(aw +p13) +§_j_1723(023 + st)}
The equations (7) may be brought to the form (1) if we denote in (7)
+G
f=t ®)

and write B, _,; and By, instead of by5 and by5.  The only difference is that the
coeflicients B, and B, as well as g; depend in our case on the parameter 7.
Therefore we can use the equations (1) as the starting-point of our
calculations.

In the course of our discussions we shall suppose that B,;, B,; and g5 are
constant, since the range of the relative variation of these quantities is
undoubtedly very small compared with the range of variation of other
quantities entering into our investigation. This circumstance will have
the consequence that we may obtain from our theory the information, not
about the distribution of the * ultra-violet” radiation in the spectrum, but
only about the approximate mean value of its intensity.

The Approximate Form of the Solution of the Equations of the Steady
State—Each specific density p;;, we may write in the form p;, =p. 0.
The quantities p;;, are dimensionless. According to Planck’s law, at the
surface of stars we shall have

_ 1
Pik =7z

erT —1

Let us suppose that v,y > 2kT and vyg > 2kT.* Then the quantities p;;
are even at the surface of the star small compared with unity. We have
approximately at the surface p,5 =p;5p55, and therefore if we call p;, and pgy
small quantities of the first order, 5,5 will be of the second order. In the
envelope p;, may scarcely attain values many times exceeding their surface
values. Therefore we may always regard them as small quantities, and
especially p,5 as a small quantity of the second order.

The equations of the transfer of radiation for the frequencies v;, and
v13, which we shall consider in the following paragraph, contain the following
two expressions :—

&, &,

gzg and gsg

1 1
n,—-n n,—->n
1 gz 2 1 g3 3

These ratios are to be calculated from the equations (1). The corre-
sponding expressions are somewhat complicated. But they attain extra-
ordinary simplicity if we restrict ourselves to the members of the first and

* These conditions are fulfilled almost in every case, which is of practical
interest.
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of the second order and neglect the higher terms. The calculations are too
long to be reproduced here. The results are

S =p1a+¥(P13 — P12P2s)s (9)
ny —&”2
8
&,
83 - - - -
—=>—— =p13+ B(P12P2s — P13)s (10)
&1
&3
where the constants y and B have the following values :—
£2B13B1301305;
- , I1
Y By5015[g1B1501s + g2 Bas0as) ()
&2B23023 _ Byyoy, (12)

— = y.
81813013+ g2B23023  By3013

The approximation which we have applied has a very simple physical
meaning. We may consider indeed the atomic transitions of the type
I—-2—1 as simple processes of the scattering of the quanta with the
frequency »;, by normal atoms. The more complicated processes of the
type 1 -2 —->3—>10r 1 —2—73—>2— I we may consider as the processes
of the collision of the normal atom with two quanta Av,, and Av,;. After the
collision of such type we may have either one quantum with the frequency
V13, OF again two quanta hv,, and Avy;. 'There may also occur the collisions
of three or more quanta with a normal atom. Such are, for example, the
processes of the type 1 -2 -~ 3 -~ 2 - 3 - 1, where two quanta Av,; and a
quantum hv,, collide with the normal atom. If, however, the density of
radiation for every frequency is small we may neglect all collisions where
more than two quanta take part. Assuming further that the density of
radiation of the frequency v,; is small even when compared with p;, and p,s,
we may neglect also such collisions with two quanta at once, when at last
one of two quanta has the frequency v;;. Thus we shall obtain again the
equations (9) and (10).

From this point of view the “classical” theory of monochromatic
radiative equilibrium, which, as it was emphasised by some writers, is
applicable only to the resonance lines, is the first approximation where
only the small quantities of the first order are taken into account. This
approximation is sufficient to explain on general lines the formation of
absorption lines, but cannot give the explanation of the existence of the
emission lines. We know (according to Rosseland) that such an explanation
is impossible unless three frequencies and the cyclic transitions are taken into
account. 'The theory outlined in the present paper is a second approxima-
tion, since the terms of the second order are taken into account. It has general
character, while the theory given in the previous works of the writer is applic-
able only to the special cases when, owing to very strong dilution of radiation,
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we may neglect the term p,,6,; compared with 5;;. The present theory,
though still very far from accurate, will give in every case the main features
of the phenomena of emission-lines.

The Equations of Transfer.—For each frequency appearing in our con-
sideration we may write the corresponding equation of transfer. But it is
superfluous to do it for the frequency v, since we may suppose that the
total optical thickness of the gaseous envelope in this frequency is certainly
small compared with unity. In fact this frequency corresponds to the
ionisation from an excited state, and therefore the optical thickness in it
will be of the same order of magnitude as the optical thickness arising from
the general opacity of the envelope, since this opacity is caused chiefly by
such bound-free transitions from excited states. The optical thickness
arising from the general opacity reaches the values of the order of unity
only in the photosphere of the star. The same will be true for the frequency
ves, and the envelope will be transparent for this frequency. Therefore we
may write directly

1323=’LT’ (13)

where W is the coefficient of dilution.
The equations of the transfer of radiation for the frequencies v,, and v,
as it is known * may be written in the form :

- dl,, . _ 1 _,.gl‘wr: Ny , (14)
12 <n1 —&n2>£ds 82 4 n —&n2

Avyy 8o ¢ &2

7 9L B =—1I; +g_1 G T » (15)

—@<n1 —g—ln3>—£3ds Es 47 n, —g;ln3

Av,g 8 / € &3

where I,, and I,; are the specific intensities of radiation with frequencies
v12 and vyg, ds is the element of the trajectory of the ray, Av, is the width
of the resonance line and Av; the effective width of the corresponding
absorption line.

If we introduce the absorption coefficient a per unit of volume for the

frequency vy,
hvy, q1 B,
= — =Ny |—— 6
a2 q) 2, (16)

we obtain alys _ I, (81601 M ’ (17)
ads 82 47 &1
nl - _n2
&e
1,0
dly; =V13AV12 L g 31113, .4 81608 M
ads  viAvyg & By 1 8s 47 &1, [ (18)
7l1 - ——712 nl - —n3
& &3

* Milne, M.N., 88, 493, 1928.
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It is convenient to introduce instead of intensities I;, and I,; the dimen-
sionless quantities ¢ and ¢ :

co co
Too =22 =13,
1=V I o= (19)
Then the equations (17) and (18) obtain the simple form:
&1
==n
d 2
a9 __ ¢+ g2 , (20)
ads &1
nl - '_n2
82
&1 &1 ]
1y —2n , 2n
dif _V13AV12 ' 83 *Bi, g _
— = —1 -+ . (21)
82 83

It is clear that between ¢ and ¢ from one side and p,, and p,5 from another
we have the following relations :—

I 1
P12 = ;Jff’dw 3 p1z= ;J%l’dw» (22)

where dw is the element of the solid angle and the integration is carried over
all directions.

If p,5 is a small quantity of the second order, the quantity ¢ will be also
of the second order. The quantity in brackets in (21) is then also of the
second order, and in the factor before these brackets we may freely neglect
the small quantities of the first order and write

If we denote further,
v1sivys ﬂa .

S £
V12AV13 B 12

we may write, taking into account (9), (10) and (22) instead of (20) and (21),

R S [CRR ¥ (23)
P = ARG ) (24)

It remains now to solve these equations, where ¢ and # are the functions
of co-ordinates and of the direction of radiation. However, the solution
may be actually performed only in the case when the boundary conditions
for ¢ and ¢ and the function a of co-ordinates are given.
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The Geometrical Model—The equations (23) and (24) have general
character and are applicable to all atmospheric problems with any (constant
or variable) coefficient of dilution. However, we exclude from further
considerations the Wolf-Rayet stars owing to the fact that the high velocity
of ejection of matter from them leads to an inequality of frequencies of the
given line in different parts of the atmosphere. Therefore the problem
in this case cannot be reduced to a one-dimensional one.

In the calculations given below we shall restrict ourselves again to the
cases when the dilution factor is small compared with unity. Let us
suppose, for example, that W < 135. In this case we may with safety use
the method of the reduction of the spherical problem to a plane problem
developed by Professor Milne.* The only difference will be in the cir-
cumstance that we shall count the diffuse radiation and the direct radiation
coming from the star together, while in Milne’s work, as well as in the writer’s
papers, they were treated separately. This will make the method slightly
less accurate. But the calculations are in this case not so complicated.

Let us introduce the optical depth at the distance 7 from the centre of
the star :

Ta
T =j adr,
where 7, is the outer boundary of the nebular shell. If further 7; is the
distance of the inner boundary from the centre, we shall write

Ty =j “adr.
7, is the whole optical thickness of the shell.

Using the approximation of the Schwarzschild-Schuster type and intro-
ducing the average values ¢ and ¢’ of ¢ for the outward and inward direc-
tions of radiation and the corresponding average values ¢ and ' of the
quantity ¢, we have instead of (23) and (24) the following approximate
equations :—

:‘ % =6~ 3{($+¢") + [P +4" ~ pasld + )] (25)
O Rt TR ORI 6)
L MU+ Bl ) - (b, o)
L H )+ Bl + ) - G+ - 8)

At the outer boundary we have the following conditions :—

¢'(0) =4'(0) =o. (D)

* E. A. Milne, Zs. f. Astrophysik, 1, 98, 1930.
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At the inner boundary we have for the resonance frequency the condi-
tion that the resulting flux vanishes,

$(71) = ¢'(71) =0, (E)

since we may neglect the direct radiation from the star in this frequency.
For the “‘ultra-violet” radiation we have at this boundary

$rs) = (r2) =Y, ()

owing to the fact that (=,) contains the direct radiation from the star.
The constant ¢, is connected with the amount 7S of the ultra-violet energy
falling on each square centimetre of the inner surface by means of the relation:

_y48

_2_(30'13

o =2W(p13)surt-

It remains now to solve the equations (25), (26), (277) and (28), taking
into account the boundary conditions (D), (E) and (F).

The Solution of the Equations.—Adding (25) with (26) and (27) with
(28) we obtain

d ’
LOIP) gy, (29)

d !
Sy (30)

Subtracting (26) from (25) and (28) from (27) we have
P )yt ) 31
d _ ’

=) Bt ) -] (32)

Differentiating (29) and (30) and comparing with (31) and (32) we obtain
the following system of two second-order equations for ¢ +¢’ and  +' :—

SR e a0 (33)
1 d2 !
— PO Bl o9~ s+ 9] (34)

In Milne’s model the linear thickness of the nebular shell is assumed
small compared with the distance from the centre. Therefore it is con-
sistent with this model to put W =const, or according to (13), ps3 =const.

In this case the general solution of the system of equations (33) and
(34) has the form :

¢+¢" =Cy+Cyr+Coelr + Cre'

2
P+ =pps(Cy+ Car) - %g(cselr +Che7) |’ (35)
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where
A=2V'ypys+ B
Using (29) and (30) we obtain now :

¢_¢’ =9+C_3}\el‘r_.c;4he—ﬂ.r l

2 2

Y-y —p23C Qﬁ ACeh + BAC e—l"J

Comparing (36) with (E) and (F) we have
Cy+ Csdetr —~ Cyhe=Am =
P 9By o i B i,
quZ 2y =—ACse + /\Ce =t,.
From (35) and (36) we have further

\

/ C )\ A
2‘}5, = <C1 - '2-2> +Cyr+ C3<I - 5>e/17 + C4<I + ;)e—lf,

479

(36)

(37)

(38)

(39)

oG (oS
2¢ —< 29 P23+ CopasT — y[ ' Caetr + Tt Cye* |. (40)

Therefore the boundary conditions (D) may be written in the form :

<1 cz>+c<1_i‘>+c< g\):q

(-GS 2o 2

(41)

(42)

From the conditions (37), (38), (41) and (42) we can determine the

coefficients C;, Cy, C; and C,. We have

G= ZJ: Iqﬁ
')’st
/
L
ALlezh gl -D-[e- 2 el e
YPe3

(2 2 2 o[22 22 2 o
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CZ=2_q¢’0 . Zﬁ \
P23 I+ q___ :
VP23
(1 —‘Q)Sbo B—Z'T +|:<I A _|_21>}2)"q_¢0 1 2
p23< , ')/923 q/ 1Apas3 I+qT
Cy= - ?’st . VP23

B (T e e e

et A

C4= - 'J/Pzz

[y mn e yifs(l-%)]e-ﬂﬁ | |

Ionisation in the Envelope.—Our purpose is to find the ionisation in the
envelope. When the envelope is transparent to radiation of the frequency
v13, the ionisation is to be calculated according to the simple formule given
by Eddington and Rosseland. However, the most interesting case is that
when the envelope is not transparent to this radiation, i.e. the optical thickness
in the frequency v;, which is equal to ¢y, is large compared with unity.

Thus 7, >> 2 Usually (I} is of the order of 10%. Therefore, if the dilution

of radiation is not as high as in planetaries, the quantity e~*7 is exceedingly
small and et exceedingly large. This circumstance gives the possibility
of simplifying the expressions for C; and C,, neglecting small quantities.
Thus we obtain from the formule given above the following approximate

values :—
(1 —q)o
7*B
1523< +——>
2 I ~ b
Cs =Tq_s‘b_9 236_271 ) Cy=- Y ng 2 A\ (44)
Py 4F <1+—>+T<1+—>
YPes3 2/ YP23 2q9

It is clear now that the expression
Caeﬂ.ﬂ- + C4e—ﬂ.'r

is always very small except near 7=o0 and =m,. In all other parts of the
envelope, practically speaking in the whole envelope, we may write, neglecting
these terms, instead of (35):

¢p+¢' =Cy+Cyr }

b+ =pag(Cy+ Cor) . (43)
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Let us fix our attention on the case when the dilution of radiation is not
high and therefore g3 >> ¢2.* In this case we have simply

C, -2k (46)
P2s

since 8 and y are approximately of the same order of magnitude.
Taking into account that A is small compared with unity, we have also

C,z ﬁ- (47)
P23
Therefore
. . 2—% )
P+ = 523(9 +3)| (48)
P+’ = 2ho(gT + %)

We may now obtain the approximate values of p,, and p,5. We have
Pra=3(F+¢);  Pas=3(+¥),

¢ .
and 7 =- where ¢ is the optical depth in the frequency vy;. Thus:

! P
P12 = :‘g(t +1) .
P23 (49)
P1s = Po (24 3)
If we remember now that
St‘o = 2W(ﬁ13)surf > Pas = W(p23)surf > (1513)surf = (plz)surf()a%)surb
we can write instead of (49)
P12 = 2(P1o)surs(t + %)
5..~ 2Wi(5 . (50)
P13 = 2W(p1s)sur(Z + %)

We see now that if our assumptions are verified the density of radiation
in the resonance frequency in the envelope is larger than the same density
on the surface of the star. But further investigations are necessary to
examine how far this important conclusion remains valid when the super-
elastic collisions in the envelope are taken into consideration.

Introducing (50) in (10) we find the degree of ionisation :

——— = P13 = W(pra)surs - (22+1);5

or approximately :

am e
P W(p1s)eurs(2¢ + 1). (51)

3"

* We have pys = W(pgs)surt. Further,g = 107, If (53)surt is of the order of 1072,
the inequality in text is satisfied when W >> 10-%. It is certainly not satisfied in the
case of planetaries.
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